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Abstract. Diffusion of a non-biased walker through a composite (multi-phase) system is shown
to be anomalous for length scales less than the correlation lengthξ (i.e., when the path length
is measured with a ruler of length less thanξ ) and Gaussian for length scales greater thanξ .
The values ofξ and the fractal dimensiondw of the walker path in the anomalous regime reflect
the phase properties and phase domain morphology of the composite. They are related to the
diffusion coefficientDw for walker diffusion in the Gaussian regime byDw ∝ ξ2−dw , and to the
macroscopic transport coefficientσ through the relationσ ∝ Dw . The correlation lengthξ thus
gives the size above which the composite is effectively homogeneouswith respect to the transport
property of interest. Walker behaviour is compared for disordered (random), particulate–matrix,
and labyrinthine two-phase microstructures.

1. Introduction

The transport properties of a material reflect the composition and morphology of the
microstructure†. An additional parameter is the correlation lengthξ , which sets the length
scale above which the transport property is independent of sample size or volume over which
the property is measured. Asξ is itself a complex function of the material composition and
morphology, it gives the size at which the material is effectively homogeneouswith respect to
the property of interest, and cannot be determined by visual inspection of the microstructure.

The valueξ may be determined experimentally by measuring the transport coefficient
over progressively smaller volumes; for example, the electrical conductivity or resistivity
of a material changes from its constant, macroscopic value when the applied a.c. frequency
corresponds to the correlation length [2]. For a computer-generated or digitized microstructure,
ξ may only be found by application of the ‘walker diffusion method’ [3] in which a
random walker, subject to appropriate rules, diffuses through the composite material. This is
demonstrated below for two-dimensional composites with disordered (random), particulate–
matrix, and labyrinthine two-phase microstructures, respectively. The walker diffusion is
shown to be ‘anomalous’ for length scales less thanξ (i.e., the fractal dimensiondw of the
walker path is greater than two) and Gaussian(dw = 2) for length scales greater thanξ ,
thus permitting easy identification of the correlation length as the transition between the two
diffusion regimes.

As mentioned above, accurate measurement of transport properties requires that the linear
dimension of the sample exceedξ . A corollary to this is that the sample does not possess
a characteristic length scale less thanξ (this statement will be qualified later); thus the

† For reviews on various aspects of this subject see [1].
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corresponding macroscopic transport property must be a power-law function ofξ , where the
exponent is determined by the behaviour of the random walker in the anomalous regime. While
this is in some sense a trivial statement, it suggests that expressions for related macroscopic
properties can be similarly derived as power-law functions ofξ , with different exponents that
appropriately describe the system at the length scales of the anomalous regime.

The work presented here relies on the walker diffusion method [3] of calculation of
effective transport coefficients (these include the electrical conductivityσ , thermal conductivity
κ, diffusion coefficientD, magnetic permeabilityµ, etc, although the symbolσ will be used
exclusively for convenience). This method exploits the isomorphism between the transport
equations and the diffusion equation for a collection of non-interacting walkers (hence the
name). The phase domains in a composite microstructure correspond to distinct populations
of walkers, where the walker density of a population is given by the value of the transport
coefficient of the corresponding phase domain. The principle of detailed balance ensures that
the population densities are maintained, and provides the following rule for walker diffusion
over a digitized microstructure: a walker at site (or pixel)i attempts a move to a randomly
chosen adjacent sitej during the time intervalτ = (4d)−1, whered is the Euclidean dimension
of the space; this move is successful with probabilitypij = σj/(σi + σj ), whereσi andσj
are the transport coefficients for the phases comprising sitesi andj , respectively. The path
of a walker thus reflects the composition (population density) and morphology of the domains
that are encountered, and may be described by a diffusion coefficientDw that is related to the
macroscopic transport coefficientσ by

σ = 〈σ(r)〉Dw (1)

where〈σ(r)〉 is the volume average of the constituent transport coefficients. The diffusion
coefficientDw is calculated from the equation

Dw = 〈R2〉/(2dt) (2)

where the set{R} of walker displacements, each occurring over the time intervalt , comprises
a Gaussian distribution that must necessarily be centred well beyondξ .

2. Anomalous walker diffusion

For displacementsR < ξ , the walker diffusion is anomalous rather than Gaussian due to
the heterogeneity of the microstructure at length scales less thanξ (note that the specimen
or periodic lengthL replacesξ here and in the work that follows whenL < ξ ). There is,
however, an additional characteristic lengthξ0 < ξ below which the microstructure is again
effectively homogeneous; this may correspond, for example, to the average phase domain
size. A walker displacement ofξ requiring a travel timetξ = ξ2/(2dDw) is then comprised
of (ξ/ξ0)

dw segments of lengthξ0, each requiring a travel time oft0 = ξ2
0/(2dD0), whereD0

is the walker diffusion coefficient calculated from displacementsR < ξ0. Setting

tξ = (ξ/ξ0)
dw t0 (3)

gives the relation

Dw = D0(ξ/ξ0)
2−dw (4)

between the walker diffusion coefficientDw and the correlation lengthξ . This equation has
been derived previously in the context of percolation theory [4] and for conducting pore–
insulating matrix systems [5], wheredw is then the fractal dimension of the walker path on a
percolating cluster near the percolation threshold, and through a system of connected pores
comprising a fractal structure, respectively. (The assumption is made that the trajectory of a
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Figure 1. Disordered (random) two-phase composite (size
200×200). The white phaseA has volume fraction equal to the
percolation thresholdpc. For an infinite system, the correlation
lengthξ goes to infinity as the conductivity of the black phase
B goes to zero.

walker confined to a fractal structure will itself be fractal. This is certainly so in the former
case (a disordered conductor–insulator system near the percolation threshold) [6], and has
been demonstrated indirectly [7, 8] for self-similar models made up of the Sierpiński gasket
and its generalizations to all Euclidean dimensions.) Equations (1) and (4) together show
that all transport properties of a heterogeneous material have a power-law dependence on the
correlation length, reflecting the absence of a natural length scale betweenξ0 andξ . Like ξ ,
the exponentdw is a complex function of the material composition and morphology. Because
Dw is a functional of the ratiosσi/σj of the constituent phase property values, the dependence
of ξ anddw on the phase properties is expected to likewise take the form of ratios.

The dimensiondw of a walker path that is fractal over length scalesξ0 < R < ξ may be
determined from the generalization of equation (3),

tR = (〈R2〉/ξ2
0 )
dw/2t0. (5)

Composites, however, do not in general give rise to walker trajectories that can be characterized
by a single fractal dimension, whereupondw in equation (5) must be replaced by the length-scale
dependent dimensiondw(R). In any case,dw = 2 for R > ξ , which allows an unambiguous
graphical determination of the correlation length.

The heterogeneity of the microstructure is indicated as well by the irregular shape of the
growing cluster comprised of all sites visited by a diffusing walker. At timet the cluster
containsS(t) sites and has a radius of roughly〈R(t)2〉1/2. The cluster sizeS(t) is assumed
to scale with radius as〈R(t)2〉Ds/2, whereDs is the dynamic mass fractal dimension of the
cluster. The time dependence ofS(t) is made explicit by using equation (5) to obtain

S(t) ∝ tDs/dw = tds/2 (6)

where the spectral (or fracton) dimensionds = 2Ds/dw [8, 9]. The valuesDs andds are
expected to change at the crossover timetξ given by equation (3), as the cluster radius is then
approximatelyξ .

3. Application to disordered composites

An analytic expression forξ may be found for the special case of a two-dimensional, two-
phase disordered (random) composite at the percolation thresholdpc = 0.592 75 of the higher
conductivity phase. This composite has electrical conductivityσ = (σAσB)1/2, whereσA and
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Figure 2. Average values for (a) walker displacement-squaredR(t)2 and (b) numberS(t) of visited
sites for walks over the indicated time intervalst through disordered, two-phase composites (as
shown in figure 1) with phase conductivity ratioσB/σA = 10−3. The bend in the sequence of data
points occurs at the crossover timetξ separating the anomalous (walker path dimensiondw > 2)
and Gaussian(dw = 2) regimes, and so locates the correlation lengthξ in (a) and the critical cluster
size in (b) where the dynamic mass fractal dimensionDs of the cluster of visited sites changes.
The solid lines are fits to the data points in each regime; the dashed line in (a) indicates the walker
behaviour under the random medium approximation.

σB are the conductivities of the majority and minority phases, respectively [10]. Substitution
of this relation and equation (4) into equation (1) gives

ξ = ξ0

[
(σAσB)

1/2

D0[σApc + σB(1− pc)]
]1/(2−dw)

. (7)

Figure 1 shows a computer-generated representation of such a binary composite, where
the black sites (pixels) are of the minority phaseB. Figure 2 presents values for (a) 〈R(t)2〉
and (b) 〈S(t)〉 calculated by the walker diffusion method (and using the variable residence
time algorithm [3]) for 500× 500-site periodic composites with the ratioσB/σA = 10−3.
The average values〈R(t)2〉 and〈S(t)〉 are determined from 12 different, randomly generated
composites; those 12 values each ofR(t)2 andS(t) are themselves average values found from
105 walks, each of durationt , over a single composite. In every case the error bar of two
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Table 1. The walker path dimensiondw , spectral dimensionds , dynamic mass fractal dimension
Ds , correlation lengthξ , walker diffusion coefficientDw , and conductivityσ of two-dimensional,
two-phase disordered composites with volume fraction of the majority phaseA at the percolation
threshold and phase conductivity ratioσB/σA.

Anomalous regime(dw > 2) Gaussian regime(dw = 2)

σB/σA dw ds Ds ξ ds = Ds Dw σ/σA

1 — — — — 1.80 1.0000 1.0000
0.01 2.42 1.23 1.49 15 1.77 0.1676 0.1000
0.001 2.73 1.17 1.59 32 1.72 0.0533 0.0316
0.0001 2.85 1.16 1.65 93 1.59 0.0169 0.0100

standard deviations is obscured by the plotted point.
The correlation lengthξ and crossover timetξ distinguishing the anomalous and Gaussian

regimes are easily identified by the bend in the array of data points. The linear least-squares
fit to the〈R(t)2〉 points lying within the anomalous regime givesdw = 2.73 (slope= 2/dw);
substitution of this and values forξ0 (ln ξ2

0 is taken to be they-intercept of the fit) andD0 (taken
to beξ2

0/4) into equation (7) givesξ = 32, in excellent agreement with a visual estimate ofξ .
The linear least-squares fit to the〈R(t)2〉 points lying within the Gaussian regime givesdw = 2
(slope= 1) as expected, andy-intercept equal to ln(4Dw). The parallel dashed line hasy-
intercept equal to ln(4DRMA), whereDRMA is the random medium approximation (RMA) [3]
value for the walker diffusion coefficient. The RMA does not account for correlations between
subsequent moves and so is exact only in the limitt → 0. Clearly, the anomalous walker
behaviour shown in figure 2(a) is inevitable for disordered composites (including conductor–
insulator systems), simply becauseDw will always differ fromDRMA.

Figure 2(b) shows the power-law growth ofS(t)with spectral dimensionds (slope= ds/2)
that changes gradually near the crossover timetξ . For very larget , the numberS(t) of visited
sites is limited by the size of the system, which is indicated in figure 2(b) by the extent of the
best-fit line in the Gaussian regime (note that the last data point is affected by this limit).

The calculated values ofξ , the dimensionsdw, ds , andDs in the anomalous and Gaussian
regimes,Dw, andσ are presented in table 1 together with values for disordered composites
with σB/σA = 1, 10−2, and 10−4. Of primary interest is theprogressionof values asσB/σA
decreases rather than the numbers themselves, since the latter (excepting those forDw and
σ ) derive from slopes determined by linear least-squares fits to collections of data points that
judiciously (i.e., subjectively) exclude those at very short times and at times aroundtξ .

Similar calculations were made for systems withL < ξ . As expected, the dimensionsdw,
ds , andDs describing the walker behaviour in the anomalous regime did not change, while
Dw andσ increased (the best-fit line to the Gaussian data in figure 2(a) moved upwards in
accordance with equation (4)).

An analytic expression forξ may also be found for the special case of a disordered (random)
conductor–insulator system(σB/σA = 0). Here all quantities are derived from walker diffusion
restricted to an infinite conducting cluster (note that equation (4) is not otherwise correct).
Equation (1) may be writtenσ = σAφ′ADw, whereφ′A is the volume fraction of sites belonging
to the infinite cluster. Combining this with equation (4) and the relation [3, 11]

σ

σA
=
(
φA − pc
1− pc

)µ
(8)
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Figure 3. Two-phase composite with a particulate–matrix
microstructure (size 200× 200). The black phaseB has volume
fraction 0.25.

whereφA > pc is the volume fraction of conductor phase, produces

ξ = ξ0

[
1

D0φ
′
A

(
φA − pc
1− pc

)µ]1/(2−dw)
. (9)

Near the percolation threshold,φ′A ∼ (φA − pc)β , soξ ∼ (φA − pc)−ν with ν = (µ −
β)/(dw−2)as expected [6]. Equation (9) was verified by calculations similar to those described
above. Due to the strong correlation between subsequent walker moves, approximate analytic
values forξ0 andD0 may be used in equation (9). For two-dimensional systems, these are
ξ0 = 1 andD0 = (4t0)−1, where the timet0 = (1−φA)3+3φA(1−φA)2/2+φ2

A(1−φA)+φ3
A/4

is obtained by considering the first move of a walker placed randomly on an infinite cluster.

4. Application to particulate–matrix and labyrinthine composites

More generally, composites are comprised of phase domains arranged in a distinct
microstructure. A typical morphology is shown in figure 3, where second-phase particles
are embedded in a host matrix. Figure 4 presents values for (a) 〈(R(t)2〉 and (b) 〈S(t)〉 for this
two-dimensional (200× 200-site periodic) composite withσB/σA = 103. Each data point is
the average of 12 values, where each of those 12 values is in turn the averageR(t)2 or S(t)
produced by 105 walks, each of durationt . In every case the error bar of two standard deviations
is obscured by the plotted point. As found for the disordered composites above, the anomalous
and Gaussian regimes are readily distinguished; the correlation lengthξ and crossover timetξ
are identified in figure 4(a) by the intersection of the sequence of data points with the solid line
fit to those points lying in the Gaussian regime. The dashed line in figure 4(a) with a slope of 1
andy-intercept equal to ln 4 would be produced by a walker diffusing through a single-phase
system(Dw = 1), and so gives the limiting behaviour att → 0 for the particulate–matrix
system. An anomalous diffusion regime terminating at the correlation lengthξ is therefore
inevitable. The odd hump in the data in figure 4(b) may be due to ‘capture’ of the walker by
the higher conductivity particles (phaseB), as the corresponding value of〈S(t)〉 is roughly the
size of a typical particle. The two ends of the best-fit line derived from the data points in the
Gaussian time regime indicate the crossover timetξ and the size of the system, respectively.

The labyrinthine two-phase morphology shown in figure 5 is also typical of real
microstructures. Figure 6 presents values for (a) 〈R(t)2〉and (b) 〈S(t)〉 for this two-dimensional
(200× 200-site periodic) composite withσB/σA = 10−3, obtained in the same manner as for
the particulate–matrix system. Again, the correlation lengthξ and crossover timetξ separating
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Figure 4. Average values for (a) walker displacement-squaredR(t)2 and (b) numberS(t) of
visited sites for walks over the indicated time intervalst through the composite shown in figure 3
(particulate–matrix microstructure) with phase conductivity ratioσB/σA = 103. The solid lines are
fits to the data points in the Gaussian regime; the dashed line in (a) indicates the walker behaviour
in a single-phase material.

Figure 5. Two-phase composite with a labyrinthine
microstructure (size 200×200). Each phase has volume fraction
0.5.
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Figure 6. Average values for (a) walker displacement-squaredR(t)2 and (b) numberS(t) of
visited sites for walks over the indicated time intervalst through the composite shown in figure 5
(labyrinthine microstructure) with phase conductivity ratioσB/σA = 10−3. The solid line in (a) is
a fit to the data points in the Gaussian regime, while the dashed line indicates the walker behaviour
in a single-phase material.

the anomalous and Gaussian regimes are easily identified.
Values for the correlation lengthξ , the walker diffusion coefficientDw, and the conductiv-

ity σ for these particulate–matrix and labyrinthine systems are given in table 2. The larger val-
ues in the latter case are due to the percolating domain structure of the higher conductivity phase.

These examples demonstrate that a distinct correlation length (associated with a particular
transport property) exists even for non-fractal composite microstructures. This is because
the heterogeneityof the microstructure (as expressed by the morphology, phase domain
distribution, etc, as well as by the ratiosσi/σj ) is length-scale dependentat all length scales
up toξ .

5. Discussion

While the concept of ‘correlation length’ underpins percolation theory, which essentially
considers the properties of disordered, conductor–insulator systems, it is much less
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Table 2. The correlation lengthξ , walker diffusion coefficientDw , and conductivityσ of the
particulate–matrix and labyrinthine microstructures shown in figures 3 and 5, respectively.

Morphology ξ Dw σ

Particulate–matrix 8 0.0080 0.0020σB
Labyrinthine 91 0.0347 0.0174σA

appreciated in experimental and applied research, where measurements are generally made
on heterogeneous composite materials. Microscopic systems, such as multiphase alloy
microstructures and porous rock, are typically characterized optically due to the availability
of sophisticated imaging techniques and image analysis software. In this context, the
work reported here makes the point that homogeneity is not ‘in the eye of the beholder’;
rather it is in reference to the particular property under study. At the other size extreme,
megascopic systems such as oil reservoirs and aquifers cannot be studied in their entirety,
so subsystems (or subvolumes), often of size less thanξ , are characterized instead. The
measured physical property (e.g., fluid permeability) will then be subsystem size-dependent,
and phenomenological equations of motion (e.g., Darcy’s law) that require a homogeneous
system may not be obeyed.

Equations (1) and (4) together show that the transport properties of a heterogeneous system
are power law functions ofξ . Thatξ (anddw) depends on the constituent phase properties
as well as on the phase domain morphology and distribution seems to fundamentally limit
the usefulness of purely morphological (i.e., visual) descriptors such as fractal dimension and
n-point correlation functions in the calculation of transport properties of composites.
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