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Abstract. Diffusion of a non-biased walker through a composite (multi-phase) system is shown
to be anomalous for length scales less than the correlation lén(jtl., when the path length

is measured with a ruler of length less thghand Gaussian for length scales greater than

The values ot and the fractal dimensiod, of the walker path in the anomalous regime reflect

the phase properties and phase domain morphology of the composite. They are related to the
diffusion coefficientD,, for walker diffusion in the Gaussian regime By, « £2-%», and to the
macroscopic transport coefficiemtthrough the relatiom o« D,,. The correlation lengt§j thus

gives the size above which the composite is effectively homogeneithusespect to the transport
property of interest Walker behaviour is compared for disordered (random), particulate—matrix,
and labyrinthine two-phase microstructures.

1. Introduction

The transport properties of a material reflect the composition and morphology of the
microstructuret. An additional parameter is the correlation leggtithich sets the length
scale above which the transport property is independent of sample size or volume over which
the property is measured. Asis itself a complex function of the material composition and
morphology, it gives the size at which the material is effectively homogengitlisespect to
the property of interesind cannot be determined by visual inspection of the microstructure.

The value¢ may be determined experimentally by measuring the transport coefficient
over progressively smaller volumes; for example, the electrical conductivity or resistivity
of a material changes from its constant, macroscopic value when the applied a.c. frequency
corresponds to the correlation length [2]. For a computer-generated or digitized microstructure,
& may only be found by application of the ‘walker diffusion method’ [3] in which a
random walker, subject to appropriate rules, diffuses through the composite material. This is
demonstrated below for two-dimensional composites with disordered (random), particulate—
matrix, and labyrinthine two-phase microstructures, respectively. The walker diffusion is
shown to be ‘anomalous’ for length scales less thdne., the fractal dimensiod,, of the
walker path is greater than two) and Gaussidy = 2) for length scales greater thdn
thus permitting easy identification of the correlation length as the transition between the two
diffusion regimes.

As mentioned above, accurate measurement of transport properties requires that the linear
dimension of the sample exceéd A corollary to this is that the sample does not possess
a characteristic length scale less tharithis statement will be qualified later); thus the

T For reviews on various aspects of this subject see [1].
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corresponding macroscopic transport property must be a power-law functigmbiere the
exponentis determined by the behaviour of the random walker in the anomalous regime. While
this is in some sense a trivial statement, it suggests that expressions for related macroscopic
properties can be similarly derived as power-law functions, afith different exponents that
appropriately describe the system at the length scales of the anomalous regime.

The work presented here relies on the walker diffusion method [3] of calculation of
effective transport coefficients (these include the electrical conductiyttyermal conductivity
K, diffusion coefficientD, magnetic permeability, etc, although the symbel will be used
exclusively for convenience). This method exploits the isomorphism between the transport
equations and the diffusion equation for a collection of non-interacting walkers (hence the
name). The phase domains in a composite microstructure correspond to distinct populations
of walkers, where the walker density of a population is given by the value of the transport
coefficient of the corresponding phase domain. The principle of detailed balance ensures that
the population densities are maintained, and provides the following rule for walker diffusion
over a digitized microstructure: a walker at site (or pixe§ttempts a move to a randomly
chosen adjacent sifeduring the time intervat = (4d) %, whered is the Euclidean dimension
of the space; this move is successful with probability = o;/(0; + ), whereos; ando;
are the transport coefficients for the phases comprising saesl j, respectively. The path
of a walker thus reflects the composition (population density) and morphology of the domains
that are encountered, and may be described by a diffusion coeffi@jetitat is related to the
macroscopic transport coefficiemtby

o = (o(r)) Dy 1)

where (o (7)) is the volume average of the constituent transport coefficients. The diffusion
coefficientD,, is calculated from the equation

D,, = (R?)/(2dt) (2)

where the sefR} of walker displacements, each occurring over the time intep@mprises
a Gaussian distribution that must necessarily be centred well bé&yond

2. Anomalous walker diffusion

For displacement® < &, the walker diffusion is anomalous rather than Gaussian due to
the heterogeneity of the microstructure at length scales lessttiiaote that the specimen

or periodic lengthL replacest here and in the work that follows when < &). There is,
however, an additional characteristic lenggh< & below which the microstructure is again
effectively homogeneous; this may correspond, for example, to the average phase domain
size. A walker displacement gfrequiring a travel time: = £2/(2d D,,) is then comprised

of (£/&0)% segments of lengtky, each requiring a travel time of = gg/(ZdDo), whereDg

is the walker diffusion coefficient calculated from displaceménts &. Setting

t: = (£/80)™ 1o &)
gives the relation
D, = Do(§/50)* 4)

between the walker diffusion coefficieft, and the correlation length. This equation has

been derived previously in the context of percolation theory [4] and for conducting pore—
insulating matrix systems [5], whetg, is then the fractal dimension of the walker path on a
percolating cluster near the percolation threshold, and through a system of connected pores
comprising a fractal structure, respectively. (The assumption is made that the trajectory of a
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Figure 1. Disordered (random) two-phase composite (size
200x 200). The white phasé has volume fraction equal to the
percolation thresholgd,. For an infinite system, the correlation
length& goes to infinity as the conductivity of the black phase
B goes to zero.

walker confined to a fractal structure will itself be fractal. This is certainly so in the former
case (a disordered conductor—insulator system near the percolation threshold) [6], and has
been demonstrated indirectly [7, 8] for self-similar models made up of the B#ipiasket
and its generalizations to all Euclidean dimensions.) Equations (1) and (4) together show
that all transport properties of a heterogeneous material have a power-law dependence on the
correlation length, reflecting the absence of a natural length scale betyaadé. Like &,
the exponend,, is a complex function of the material composition and morphology. Because
D, is a functional of the ratios; /o; of the constituent phase property values, the dependence
of &£ andd,, on the phase properties is expected to likewise take the form of ratios.

The dimensiond,, of a walker path that is fractal over length scags< R < &€ may be
determined from the generalization of equation (3),

tr = ((R?)/E5)™ 1. (5)

Composites, however, do not in general give rise to walker trajectories that can be characterized
by a single fractal dimension, whereupfnin equation (5) must be replaced by the length-scale
dependent dimensiaf), (R). In any cased,, = 2 for R > &, which allows an unambiguous
graphical determination of the correlation length.

The heterogeneity of the microstructure is indicated as well by the irregular shape of the
growing cluster comprised of all sites visited by a diffusing walker. At tintae cluster
containsS(¢) sites and has a radius of roughli(¢)?)/2. The cluster sizeS(¢) is assumed
to scale with radius a&R(r)?)?+/2, whereD; is the dynamic mass fractal dimension of the
cluster. The time dependencefif) is made explicit by using equation (5) to obtain

S(t) o th/dur — tdr/z (6)

where the spectral (or fracton) dimensign = 2D,/d,, [8,9]. The valuesD, andd, are
expected to change at the crossover tigngiven by equation (3), as the cluster radius is then
approximatel.

3. Application to disordered composites

An analytic expression fof may be found for the special case of a two-dimensional, two-
phase disordered (random) composite at the percolation thregheld.592 75 of the higher
conductivity phase. This composite has electrical conductiviy (o403)%?, whereo, and
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Figure 2. Average values fore) walker displacement-squarér)2 and ) numberS(¢) of visited
sites for walks over the indicated time intervalthrough disordered, two-phase composites (as
shown in figure 1) with phase conductivity ratig /o4 = 10~3. The bend in the sequence of data
points occurs at the crossover timeseparating the anomalous (walker path dimensgipn- 2)

and Gaussiat,, = 2) regimes, and so locates the correlation ler§gth(a) and the critical cluster
size in p) where the dynamic mass fractal dimensi@p of the cluster of visited sites changes.
The solid lines are fits to the data points in each regime; the dashed liagiimicates the walker
behaviour under the random medium approximation.

op are the conductivities of the majority and minority phases, respectively [10]. Substitution
of this relation and equation (4) into equation (1) gives

(UAO.B)l/Z 1/(2—d,)
& =& |: ]
Do[oape +op(1— pc)]

Figure 1 shows a computer-generated representation of such a binary composite, where
the black sites (pixels) are of the minority phage Figure 2 presents values fa)((R(1)?)
and @) (S(¢)) calculated by the walker diffusion method (and using the variable residence
time algorithm [3]) for 500x 500-site periodic composites with the ratig /o4 = 107°.
The average valugsR ()?) and(S(t)) are determined from 12 different, randomly generated
composites; those 12 values eactRof)? andS(¢) are themselves average values found from
10° walks, each of duration, over a single composite. In every case the error bar of two

()
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Table 1. The walker path dimensiag,,, spectral dimensiod;, dynamic mass fractal dimension
Dy, correlation lengtl§, walker diffusion coefficienD,,, and conductivityr of two-dimensional,
two-phase disordered composites with volume fraction of the majority phadehe percolation
threshold and phase conductivity ratig/c 4.

Anomalous regiméd,, > 2) Gaussian regiméd,, = 2)
op /UA dy dy Dy S dg = Dy D, O'/O‘A
1 — — — — 1.80 1.0000 1.0000
0.01 242 123 1.49 15 1.77 0.1676 0.1000
0.001 273 117 1.59 32 172 0.0533 0.0316
0.0001 285 1.16 1.65 93 1.59 0.0169 0.0100

standard deviations is obscured by the plotted point.

The correlation length and crossover time distinguishing the anomalous and Gaussian
regimes are easily identified by the bend in the array of data points. The linear least-squares
fit to the (R(¢)?) points lying within the anomalous regime givés = 2.73 (slope= 2/d,);
substitution of this and values fég (In £2 is taken to be the-intercept of the fit) and, (taken
to be$§/4) into equation (7) gives = 32, in excellent agreement with a visual estimaté .of
The linear least-squares fit to the(r)?) points lying within the Gaussian regime givés = 2
(slope= 1) as expected, ang-intercept equal to I@D,,). The parallel dashed line has
intercept equal to I Drua ), WhereDgua is the random medium approximation (RMA) [3]
value for the walker diffusion coefficient. The RMA does not account for correlations between
subsequent moves and so is exact only in the limit 0. Clearly, the anomalous walker
behaviour shown in figure & is inevitable for disordered composites (including conductor—
insulator systems), simply becaubg will always differ from Drya.

Figure 2b) shows the power-law growth 6f(z) with spectral dimensiod, (slope= d,/2)
that changes gradually near the crossover tim&or very large, the numbeS(¢) of visited
sites is limited by the size of the system, which is indicated in figulp@ [2¢ the extent of the
best-fit line in the Gaussian regime (note that the last data point is affected by this limit).

The calculated values gf the dimensiond,,, d;, andD; in the anomalous and Gaussian
regimes,D,,, ando are presented in table 1 together with values for disordered composites
with o3/, = 1, 1072, and 104, Of primary interest is therogressiorof values asrz /o4
decreases rather than the numbers themselves, since the latter (excepting tiaseafior
o) derive from slopes determined by linear least-squares fits to collections of data points that
judiciously (i.e., subjectively) exclude those at very short times and at times around

Similar calculations were made for systems with< £. As expected, the dimensiotig,

d,, and D, describing the walker behaviour in the anomalous regime did not change, while
D, ando increased (the best-fit line to the Gaussian data in figuser@pved upwards in
accordance with equation (4)).

An analytic expression farmay also be found for the special case of a disordered (random)
conductor—insulator systeig /o4 = 0). Here all quantities are derived from walker diffusion
restricted to an infinite conducting cluster (note that equation (4) is not otherwise correct).
Equation (1) may be writtem = o4¢/, D,,, whereg/, is the volume fraction of sites belonging
to the infinite cluster. Combining this with equation (4) and the relation [3, 11]

_ M
o _ <u> (8)
(o} 1- Pe
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whereg, > p. is the volume fraction of conductor phase, produces

_ [ (ea—p\TTEY
t=olng (T | ©

Near the percolation threshold, ~ (¢4 — p.)?, SOE ~ (¢pa — po) ™" With v = (u —
B)/(d,—2) as expected [6]. Equation (9) was verified by calculations similar to those described
above. Due to the strong correlation between subsequent walker moves, approximate analytic
values for&y and Do may be used in equation (9). For two-dimensional systems, these are
£ = 1andDg = (410) ', where the timey = (1—¢4)3+3p4(1—$a)*/2+¢5(1—pa) +¢3 /4
is obtained by considering the first move of a walker placed randomly on an infinite cluster.

4. Application to particulate—matrix and labyrinthine composites

More generally, composites are comprised of phase domains arranged in a distinct

microstructure. A typical morphology is shown in figure 3, where second-phase particles

are embedded in a host matrix. Figure 4 presents valuea)fafK(r)?) and @) (S(z)) for this

two-dimensional (200« 200-site periodic) composite withz /o4 = 10°. Each data point is

the average of 12 values, where each of those 12 values is in turn the aRerager S(r)

produced by 1®walks, each of duration In every case the error bar of two standard deviations

is obscured by the plotted point. As found for the disordered composites above, the anomalous

and Gaussian regimes are readily distinguished; the correlation |eagith crossover timg

are identified in figure &) by the intersection of the sequence of data points with the solid line

fit to those points lying in the Gaussian regime. The dashed line in figayewth a slope of 1

andy-intercept equal to In 4 would be produced by a walker diffusing through a single-phase

system(D,, = 1), and so gives the limiting behaviour at— 0 for the particulate—matrix

system. An anomalous diffusion regime terminating at the correlation léngthherefore

inevitable. The odd hump in the data in figurdyihay be due to ‘capture’ of the walker by

the higher conductivity particles (phaBg, as the corresponding value@f(z)) is roughly the

size of a typical particle. The two ends of the best-fit line derived from the data points in the

Gaussian time regime indicate the crossover tijrand the size of the system, respectively.
The labyrinthine two-phase morphology shown in figure 5 is also typical of real

microstructures. Figure 6 presents values@t R (r)%) and @) (S(z)) for this two-dimensional

(200 x 200-site periodic) composite withs /o, = 1073, obtained in the same manner as for

the particulate—matrix system. Again, the correlation leggihd crossover timg separating
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Figure 4. Average values ford) walker displacement-square®i(r)2 and ) numbersS(r) of
visited sites for walks over the indicated time intervaterough the composite shown in figure 3
(particulate—matrix microstructure) with phase conductivity ragigo4 = 10°. The solid lines are
fits to the data points in the Gaussian regime; the dashed lir indicates the walker behaviour
in a single-phase material.

0.5.

Figure 5. Two-phase composite with a labyrinthine
microstructure (size 200200). Each phase has volume fraction
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Figure 6. Average values ford) walker displacement-square®i(r)? and ) numberS(r) of

visited sites for walks over the indicated time intervaterough the composite shown in figure 5
(labyrinthine microstructure) with phase conductivity ratig/c4 = 10~2. The solid line in ) is

a fit to the data points in the Gaussian regime, while the dashed line indicates the walker behaviour
in a single-phase material.

the anomalous and Gaussian regimes are easily identified.
Values for the correlation length the walker diffusion coefficiend,,, and the conductiv-
ity o for these particulate—matrix and labyrinthine systems are given in table 2. The larger val-
uesinthe latter case are due to the percolating domain structure of the higher conductivity phase.
These examples demonstrate that a distinct correlation length (associated with a particular
transport property) exists even for non-fractal composite microstructures. This is because
the heterogeneityof the microstructure (as expressed by the morphology, phase domain
distribution, etc, as well as by the ratieg/o;) is length-scale dependeat all length scales

up toé&.
5. Discussion

While the concept of ‘correlation length’ underpins percolation theory, which essentially
considers the properties of disordered, conductor—insulator systems, it is much less
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Table 2. The correlation lengtl§, walker diffusion coefficientD,,, and conductivityo of the
particulate—matrix and labyrinthine microstructures shown in figures 3 and 5, respectively.

Morphology & Dy, o
Particulate—matrix 8 0.0080 .@MO2rp
Labyrinthine 91 0.0347 01744

appreciated in experimental and applied research, where measurements are generally made
on heterogeneous composite materials. Microscopic systems, such as multiphase alloy
microstructures and porous rock, are typically characterized optically due to the availability
of sophisticated imaging techniques and image analysis software. In this context, the
work reported here makes the point that homogeneity is not ‘in the eye of the beholder’;
rather it is in reference to the particular property under study. At the other size extreme,
megascopic systems such as oil reservoirs and aquifers cannot be studied in their entirety,
so subsystems (or subvolumes), often of size less ¢haare characterized instead. The
measured physical property (e.g., fluid permeability) will then be subsystem size-dependent,
and phenomenological equations of motion (e.g., Darcy’s law) that require a homogeneous
system may not be obeyed.

Equations (1) and (4) together show that the transport properties of a heterogeneous system
are power law functions of. That¢ (andd,) depends on the constituent phase properties
as well as on the phase domain morphology and distribution seems to fundamentally limit
the usefulness of purely morphological (i.e., visual) descriptors such as fractal dimension and
n-point correlation functions in the calculation of transport properties of composites.
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